Transitory functions
This module contains transitory functions which all have a specific physical meaning for modeling the PEM fuel cell.
C_v_sat(T)
This function calculates the saturated vapor concentration for a perfect gas, in mol.m-3, as a function of the temperature.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 | |
Cp0(component, T)
This function calculates the specific heat capacity of fluids, in J.kg-1.K-1, as a function of the temperature.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Notes
Source : Chase, M. W. (1998). NIST-JANAF Thermochemical Tables, 4th edition
Source code in modules/transitory_functions.py
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 | |
D(lambdaa)
This function calculates the diffusion coefficient of water in the membrane, in m².s-1.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
606 607 608 609 610 611 612 613 614 615 616 617 618 619 | |
Da(P, T)
This function calculates the diffusion coefficient at the anode, in m².s-1.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | |
Da_eff(element, s, T, P, epsilon, epsilon_c=None)
This function calculates the effective diffusion coefficient at the GDL, TL, MPL or the CL and at the anode, in m².s-1, considering GDL compression.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 | |
Dc(P, T)
This function calculates the diffusion coefficient at the cathode, in m².s-1.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 | |
Dc_eff(element, s, T, P, epsilon, epsilon_c=None)
This function calculates the effective diffusion coefficient at the GDL, MPL, TL or the CL and at the cathode, in m².s-1, considering GDL compression.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | |
Dcap(element, s, T, epsilon, e, epsilon_c=None)
This function calculates the capillary coefficient at the GDL or the CL and at the anode, in kg.m.s-1, considering GDL compression.
| Parameters: |
|
|---|
Source code in modules/transitory_functions.py
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 | |
K0(element, epsilon, epsilon_c=None)
cached
This function calculates the intrinsic permeability, in m², considering GDL compression.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Sources
- Qin Chen 2020 - Two-dimensional multi-physics modeling of porous transport layer in polymer electrolyte membrane electrolyzer for water splitting - for the Blake-Kozeny equation.
- M.L. Stewart 2005 - A study of pore geometry effects on anisotropy in hydraulic permeability using the lattice-Boltzmann method - for the Blake-Kozeny equation.
Source code in modules/transitory_functions.py
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 | |
Psat(T)
This function calculates the saturated partial pressure of vapor, in Pa, as a function of the temperature.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 | |
Svl(element, s, C_v, Ctot, T, epsilon)
This function calculates the phase transfer rate of water condensation or evaporation, in mol.m-3.s-1.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 | |
average(terms, weights=None)
Calculate the weighted arithmetic mean of a list of terms with corresponding weights. It is more efficient to express this function in the code than calling average from numpy.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | |
calculate_rho_Cp0(element, T, C_v=None, s=None, lambdaa=None, C_H2=None, C_O2=None, C_N2=None, epsilon=None, epsilon_mc=None)
This function calculates the volumetric heat capacity, in J.m-3.K-1, in either the GDL, the MPL, the CL or the membrane.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 | |
d2_dx2(y_minus, y_0, y_plus, dx_minus, dx_plus=None)
Computes the centered second derivative (second order) with different steps to the left and right.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 | |
d_dx(y_minus, y_plus, dx=None, dx_minus=None, dx_plus=None)
Computes the centered first derivative (second order) with different steps to the left and right.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | |
delta_h_abs(T)
This function computes the molar enthalpy of absorption of water at a given temperature, in J.mol-1. This reaction is exothermic.
Parameters
Parameters
T : float
Temperature in K.
Returns
Returns
delta_h_sorp : float
Molar enthalpy of absorption in the CL in J.mol-1.
Notes
Notes
For Nafion, the enthalpy of absorption is almost equal to that of liquefaction [vetterFreeOpenReference2019].
Source code in modules/transitory_functions.py
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 | |
delta_h_liq(T)
This function computes the molar enthalpy of liquefaction of water at a given temperature, in J.mol-1. It is calculated as the difference in molar enthalpy between liquid water (H2O_l) and water vapor (H2O_v).
Parameters
T : float Temperature in K.
Returns
delta_h_liq : float Molar enthalpy of liquefaction in J.mol-1.
Notes
This value should be close to -42 000 J.mol-1 [vetterFreeOpenReference2019].
Source code in modules/transitory_functions.py
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 | |
fv(lambdaa, T)
This function calculates the water volume fraction of the membrane.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 | |
gamma_sorp(C_v, s, lambdaa, T, Hcl)
This function calculates the sorption rate of water in the membrane, in s-1.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 | |
h0(component, T)
This function calculates the standard enthalpy of fluids, in J.mol-1, as a function of the temperature. The variation of the enthalpy of reaction with temperature is given by Kirchhoff's Law of Thermochemistry.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Notes
Source : Chase, M. W. (1998). NIST-JANAF Thermochemical Tables, 4th edition
Source code in modules/transitory_functions.py
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 | |
h_a(P, T, Wgc, Hgc)
This function calculates the effective convective-conductive mass transfer coefficient at the anode, in m.s-1.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 | |
h_c(P, T, Wgc, Hgc)
This function calculates the effective convective-conductive mass transfer coefficient at the cathode, in m.s-1.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 | |
hmean(terms, weights=None)
Calculate the weighted harmonic mean of a list of terms with corresponding weights. It is more efficient to express this function in the code than calling hmean from scipy.stats.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | |
interpolate(terms, distances)
Fast inverse distance interpolation for exactly 2 points.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | |
k_H2(lambdaa, T, kappa_co)
This function calculates the permeability coefficient of the membrane for hydrogen, in mol.m−1.s−1.Pa−1.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 | |
k_O2(lambdaa, T, kappa_co)
This function calculates the permeability coefficient of the membrane for oxygen, in mol.m−1.s−1.Pa−1.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 | |
k_th(component, T)
cached
This function calculates the thermal conductivity of fluids, in J.m-1.s-1.K-1, as a function of the temperature.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Notes
Source : Carl L. Yaws - Manuel 2014 - Transport properties of chemicals and hydrocarbons (https://www.sciencedirect.com/book/9780323286589/transport-properties-of-chemicals-and-hydrocarbons)
Source code in modules/transitory_functions.py
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 | |
k_th_eff(element, T, C_v=None, s=None, lambdaa=None, C_H2=None, C_O2=None, C_N2=None, epsilon=None, epsilon_mc=None, epsilon_c=None)
This function calculates the effective thermal conductivity, in J.m-1.s-1.K-1, in either the GDL, the MPL, the CL or the membrane. A weighted harmonic average is used for characterizing the conductivity of each material in a layer, instead of a weighted arithmetic average. The physical meaning is that all the heat energy is forced to pass through all the material, as a series resistance network, instead of a parallel one [pharoahEffectiveTransportCoefficients2006].
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 | |
k_th_gaz_mixture(k_th_g, mu_g, x, M)
This function calculates the thermal conductivity of a gas mixture, in J.m-1.s-1.K-1. The Lindsay–Bromley (Wassiljewa) method is used.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Notes
Source : [wuMathematicalModelingTransient2009] and [polingPropertiesGasesLiquids2001]
Source code in modules/transitory_functions.py
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 | |
lambda_eq(C_v, s, T)
This function calculates the equilibrium water content in the membrane. Hinatsu's expression modified with Bao's formulation has been selected.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 | |
lambda_l_eq(T)
This function calculates the equilibrium water content in the membrane from the liquid phase. Hinatsu's expression has been selected. It is valid for N-form membranes for 25 to 100 °C.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 | |
lambda_v_eq(a_w)
This function calculates the equilibrium water content in the membrane from the vapor phase. Hinatsu's expression has been selected.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 | |
mu_gaz(component, T)
This function calculates the dynamic viscosity of different gases, in Pa.s, as a function of the temperature.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Notes
Source : Carl L. Yaws - Manuel 2014 - Transport properties of chemicals and hydrocarbons (https://www.sciencedirect.com/book/9780323286589/transport-properties-of-chemicals-and-hydrocarbons)
Source code in modules/transitory_functions.py
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | |
mu_mixture_gases(components, x, T)
This function calculates the dynamic viscosity of a gas mixture, in Pa.s, as a function of the temperature.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Notes
A simple mixture law is used here to calculate the dynamic viscosity of the gas mixture.
Source code in modules/transitory_functions.py
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | |
nu_l(T)
This function calculates the liquid water kinematic viscosity, in m².s-1, as a function of the temperature.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | |
rho_H2O_l(T)
This function calculates the water density, in kg.m-3, as a function of the temperature.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | |
sigma(T)
This function calculates the water surface tension, in N.m-1, as a function of the temperature.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
708 709 710 711 712 713 714 715 716 717 718 719 720 721 | |
sigma_e_eff(element, epsilon, epsilon_c=None, epsilon_mc=None)
cached
This function calculates the effective electrical conductivity, in Ω-1.m-1, in either the GDL, the MPL or the CL, considering GDL compression.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 | |
sigma_p_eff(element, lambdaa, T, epsilon_mc=None)
This function calculates the effective proton conductivity, in Ω-1.m-1, in either the membrane or the CCL.
| Parameters: |
|
|---|
| Returns: |
|
|---|
Source code in modules/transitory_functions.py
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 | |