Flows

This file represents all the matter flows inside the fuel cell system. It is a component of the fuel cell model.

calculate_flows(t, sv, control_variables, i_fc, operating_inputs, parameters)

This function calculates the flows inside the fuel cell system.

Parameters:
  • t (float) –

    Time (s).

  • sv (dict) –

    Variables calculated by the solver. They correspond to the fuel cell internal states. sv is a contraction of solver_variables for enhanced readability.

  • control_variables (dict) –

    Variables controlled by the user.

  • i_fc (float) –

    Fuel cell current density at time t (A.m-2).

  • operating_inputs (dict) –

    Operating inputs of the fuel cell.

  • parameters (dict) –

    Parameters of the fuel cell model.

Returns:
  • dict

    Flows inside the fuel cell system.

Source code in model/flows.py
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
def calculate_flows(t, sv, control_variables, i_fc, operating_inputs, parameters):
    """This function calculates the flows inside the fuel cell system.

    Parameters
    ----------
    t : float
        Time (s).
    sv : dict
        Variables calculated by the solver. They correspond to the fuel cell internal states.
        sv is a contraction of solver_variables for enhanced readability.
    control_variables : dict
        Variables controlled by the user.
    i_fc : float
        Fuel cell current density at time t (A.m-2).
    operating_inputs : dict
        Operating inputs of the fuel cell.
    parameters : dict
        Parameters of the fuel cell model.

    Returns
    -------
    dict
        Flows inside the fuel cell system.
    """

    # ___________________________________________________Preliminaries__________________________________________________

    # Extraction of the variables
    C_v_agc, C_v_acl, C_v_ccl, C_v_cgc = sv['C_v_agc'], sv['C_v_acl'], sv['C_v_ccl'], sv['C_v_cgc']
    s_acl, s_ccl = sv['s_acl'], sv['s_ccl']
    lambda_acl, lambda_mem, lambda_ccl = sv['lambda_acl'], sv['lambda_mem'], sv['lambda_ccl']
    C_H2_agc, C_H2_acl, C_O2_ccl, C_O2_cgc = sv['C_H2_agc'], sv['C_H2_acl'], sv['C_O2_ccl'], sv['C_O2_cgc']
    C_N2 = sv['C_N2']
    T_acl, T_mem, T_ccl = sv['T_acl'], sv['T_mem'], sv['T_ccl']

    # Extraction of the operating inputs and parameters
    Hgdl, Hmem, Hcl = parameters['Hgdl'], parameters['Hmem'], parameters['Hcl']
    Hgc, Wgc = parameters['Hgc'], parameters['Wgc']
    epsilon_gdl, epsilon_c = parameters['epsilon_gdl'], parameters['epsilon_c']
    e, kappa_co, n_gdl = parameters['e'], parameters['kappa_co'], parameters['n_gdl']

    # Intermediate values
    (H_gdl_node, Pagc, Pcgc, lambda_acl_mem, lambda_mem_ccl, D_acl_mem, D_mem_ccl, D_cap_agdl_agdl, D_cap_agdl_acl,
     D_cap_cgdl_cgdl, D_cap_ccl_cgdl, ha_Da_eff_agc_agdl, hc_Dc_eff_cgdl_cgc, Da_eff_agdl_agdl, Da_eff_agdl_acl,
     Dc_eff_cgdl_cgdl, Dc_eff_ccl_cgdl, T_acl_mem_ccl) \
        = flows_int_values(sv, operating_inputs, parameters)

    # Inlet and outlet flows
    Jv_a_in, Jv_a_out, Jv_c_in, Jv_c_out, J_H2_in, J_H2_out, J_O2_in, J_O2_out, J_N2_in, J_N2_out, \
        Wasm_in, Wasm_out, Waem_in, Waem_out, Wcsm_in, Wcsm_out, Wcem_in, Wcem_out, Ware, \
        Wv_asm_in, Wv_aem_out, Wv_csm_in, Wv_cem_out \
        = auxiliaries(t, sv, control_variables, i_fc, operating_inputs, parameters)

    # ________________________________________Dissolved water flows (mol.m-2.s-1)_______________________________________

    # Anode side
    J_lambda_acl_mem = 2.5 / 22 * i_fc / F * lambda_acl_mem - \
                       2 * rho_mem / M_eq * D_acl_mem * (lambda_mem - lambda_acl) / (Hmem + Hcl)
    # Cathode side
    J_lambda_mem_ccl = 2.5 / 22 * i_fc / F * lambda_mem_ccl - \
                       2 * rho_mem / M_eq * D_mem_ccl * (lambda_ccl - lambda_mem) / (Hmem + Hcl)

    # _________________________________________Liquid water flows (kg.m-2.s-1)__________________________________________

    # Anode side
    s_agc = 0  # Dirichlet boundary condition (taken at the agc/agdl border).
    Jl_agc_agdl = - 2 * Dcap('gdl', sv['s_agdl_1'], sv['T_agdl_1'], epsilon_gdl, e, epsilon_c=epsilon_c) * \
                    (sv['s_agdl_1'] - s_agc) / H_gdl_node
    Jl_agdl_agdl = [None] + [- D_cap_agdl_agdl[i] * (sv[f's_agdl_{i + 1}'] - sv[f's_agdl_{i}']) / H_gdl_node
                             for i in range(1, n_gdl)]
    Jl_agdl_acl = - 2 * D_cap_agdl_acl * (s_acl - sv[f's_agdl_{n_gdl}']) / (H_gdl_node + Hcl)

    # Cathode side
    s_cgc = 0  # Dirichlet boundary condition (taken at the cgc/cgdl border).
    Jl_cgdl_cgdl = [None] + [- D_cap_cgdl_cgdl[i] * (sv[f's_cgdl_{i + 1}'] - sv[f's_cgdl_{i}']) / H_gdl_node
                             for i in range(1, n_gdl)]
    Jl_ccl_cgdl = - 2 * D_cap_ccl_cgdl * (sv['s_cgdl_1'] - s_ccl) / (H_gdl_node + Hcl)
    Jl_cgdl_cgc = - 2 * Dcap('gdl', sv[f's_cgdl_{n_gdl}'], sv[f'T_cgdl_{n_gdl}'], epsilon_gdl, e,
                             epsilon_c=epsilon_c) * \
                    (s_cgc - sv[f's_cgdl_{n_gdl}']) / H_gdl_node

    # _____________________________________________Vapor flows (mol.m-2.s-1)____________________________________________

    # Convective vapor flows
    #   Anode side
    Jv_agc_agdl = - 2 * ha_Da_eff_agc_agdl * (sv['C_v_agdl_1'] - C_v_agc) / (H_gdl_node + Hcl)
    #   Cathode side
    Jv_cgdl_cgc = - 2 * hc_Dc_eff_cgdl_cgc * (C_v_cgc - sv[f'C_v_cgdl_{n_gdl}']) / (H_gdl_node + Hcl)

    # Conductive vapor flows
    #   Anode side
    Jv_agdl_agdl = [None] + [- Da_eff_agdl_agdl[i] * (sv[f'C_v_agdl_{i + 1}'] - sv[f'C_v_agdl_{i}']) / H_gdl_node
                             for i in range(1, n_gdl)]
    Jv_agdl_acl = - 2 * Da_eff_agdl_acl * (C_v_acl - sv[f'C_v_agdl_{n_gdl}']) / (H_gdl_node + Hcl)

    #   Cathode side
    Jv_cgdl_cgdl = [None] + [- Dc_eff_cgdl_cgdl[i] * (sv[f'C_v_cgdl_{i + 1}'] - sv[f'C_v_cgdl_{i}']) / H_gdl_node
                             for i in range(1, n_gdl)]
    Jv_ccl_cgdl = - 2 * Dc_eff_ccl_cgdl * (sv['C_v_cgdl_1'] - C_v_ccl) / (H_gdl_node + Hcl)

    # __________________________________________H2 and O2 flows (mol.m-2.s-1)___________________________________________

    # Hydrogen and oxygen consumption
    #   Anode side
    S_H2_acl = - i_fc / (2 * F * Hcl) - \
               R * T_acl_mem_ccl / (Hmem * Hcl) * (k_H2(lambda_mem, T_mem, kappa_co) * C_H2_acl +
                                         2 * k_O2(lambda_mem, T_mem, kappa_co) * C_O2_ccl)
    #   Cathode side
    S_O2_ccl = - i_fc / (4 * F * Hcl) - \
               R * T_acl_mem_ccl / (Hmem * Hcl) * (k_O2(lambda_mem, T_mem, kappa_co) * C_O2_ccl +
                                         1 / 2 * k_H2(lambda_mem, T_mem, kappa_co) * C_H2_acl)

    # Conductive-convective H2 and O2 flows
    #   Anode side
    J_H2_agc_agdl = - 2 * ha_Da_eff_agc_agdl * (sv['C_H2_agdl_1'] - C_H2_agc) / (H_gdl_node + Hcl)
    #   Cathode side
    J_O2_cgdl_cgc = - 2 * hc_Dc_eff_cgdl_cgc * (C_O2_cgc - sv[f'C_O2_cgdl_{n_gdl}']) / (H_gdl_node + Hcl)

    # Conductive H2 and O2 flows
    #   Anode side
    J_H2_agdl_agdl = [None] + [- Da_eff_agdl_agdl[i] * (sv[f'C_H2_agdl_{i+1}'] - sv[f'C_H2_agdl_{i}']) / H_gdl_node
                               for i in range(1, n_gdl)]
    J_H2_agdl_acl = - 2 * Da_eff_agdl_acl * (C_H2_acl - sv[f'C_H2_agdl_{n_gdl}']) / (H_gdl_node + Hcl)

    #   Cathode side
    J_O2_cgdl_cgdl = [None] + [- Dc_eff_cgdl_cgdl[i] * (sv[f'C_O2_cgdl_{i+1}'] - sv[f'C_O2_cgdl_{i}']) / H_gdl_node
                               for i in range(1, n_gdl)]
    J_O2_ccl_cgdl = - 2 * Dc_eff_ccl_cgdl * (sv['C_O2_cgdl_1'] - C_O2_ccl) / (H_gdl_node + Hcl)

    # __________________________________________Water generated (mol.m-3.s-1)___________________________________________

    # Water produced in the membrane at the CL through the chemical reaction and crossover
    #   Anode side
    Sp_acl = 2 * k_O2(lambda_mem, T_mem, kappa_co) * R * T_acl_mem_ccl / (Hmem * Hcl) * C_O2_ccl
    #   Cathode side
    Sp_ccl = i_fc / (2 * F * Hcl) + k_H2(lambda_mem, T_mem, kappa_co) * R * T_acl_mem_ccl / (Hmem * Hcl) * C_H2_acl

    # Water absorption in the CL:
    #   Anode side
    S_abs_acl = gamma_sorp(C_v_acl, s_acl, lambda_acl, T_acl, Hcl) * rho_mem / M_eq * \
                 (lambda_eq(C_v_acl, s_acl, T_acl) - lambda_acl)
    #   Cathode side
    S_abs_ccl = gamma_sorp(C_v_ccl, s_ccl, lambda_ccl, T_ccl, Hcl) * rho_mem / M_eq * \
                 (lambda_eq(C_v_ccl, s_ccl, T_ccl) - lambda_ccl)

    # Liquid water generated through vapor condensation or degenerated through evaporation
    #   Anode side
    Sl_agdl = [None] + [Svl(sv[f's_agdl_{i}'], sv[f'C_v_agdl_{i}'], sv[f'C_v_agdl_{i}'] + sv[f'C_H2_agdl_{i}'],
                            sv[f'T_agdl_{i}'], epsilon_gdl, gamma_cond, gamma_evap) for i in range(1, n_gdl + 1)]
    Sl_acl = Svl(s_acl, C_v_acl, C_v_acl + C_H2_acl, T_acl, epsilon_cl, gamma_cond, gamma_evap)
    #   Cathode side
    Sl_cgdl = [None] + [Svl(sv[f's_cgdl_{i}'], sv[f'C_v_cgdl_{i}'], sv[f'C_v_cgdl_{i}'] + sv[f'C_O2_cgdl_{i}'] + C_N2,
                            sv[f'T_cgdl_{i}'], epsilon_gdl, gamma_cond, gamma_evap) for i in range(1, n_gdl + 1)]
    Sl_ccl = Svl(s_ccl, C_v_ccl, C_v_ccl + C_O2_ccl + C_N2, T_ccl, epsilon_cl, gamma_cond, gamma_evap)

    # Vapor generated through liquid water evaporation or degenerated through condensation
    #   Anode side
    Sv_agdl = [None] + [-x for x in Sl_agdl[1:]]
    Sv_acl = - Sl_acl
    #   Cathode side
    Sv_cgdl = [None] + [-x for x in Sl_cgdl[1:]]
    Sv_ccl = - Sl_ccl

    return {'Jv_a_in': Jv_a_in, 'Jv_a_out': Jv_a_out, 'Jv_c_in': Jv_c_in, 'Jv_c_out': Jv_c_out, 'J_H2_in': J_H2_in,
            'J_H2_out': J_H2_out, 'J_O2_in': J_O2_in, 'J_O2_out': J_O2_out, 'J_N2_in': J_N2_in, 'J_N2_out': J_N2_out,
            'Jv_agc_agdl': Jv_agc_agdl, 'Jv_agdl_agdl': Jv_agdl_agdl, 'Jv_agdl_acl': Jv_agdl_acl,
            'S_abs_acl': S_abs_acl, 'S_abs_ccl': S_abs_ccl, 'Jv_ccl_cgdl': Jv_ccl_cgdl,
            'Jv_cgdl_cgdl': Jv_cgdl_cgdl, 'Jv_cgdl_cgc': Jv_cgdl_cgc, 'Jl_agc_agdl': Jl_agc_agdl,
            'Jl_agdl_agdl': Jl_agdl_agdl, 'Jl_agdl_acl': Jl_agdl_acl, 'J_lambda_acl_mem': J_lambda_acl_mem,
            'J_lambda_mem_ccl': J_lambda_mem_ccl, 'Jl_ccl_cgdl': Jl_ccl_cgdl, 'Jl_cgdl_cgdl': Jl_cgdl_cgdl,
            'Jl_cgdl_cgc': Jl_cgdl_cgc, 'Sp_acl': Sp_acl, 'Sp_ccl': Sp_ccl, 'J_H2_agc_agdl': J_H2_agc_agdl,
            'J_H2_agdl_agdl': J_H2_agdl_agdl, 'J_H2_agdl_acl': J_H2_agdl_acl, 'J_O2_ccl_cgdl': J_O2_ccl_cgdl,
            'J_O2_cgdl_cgdl': J_O2_cgdl_cgdl, 'J_O2_cgdl_cgc': J_O2_cgdl_cgc, 'S_H2_acl': S_H2_acl,
            'S_O2_ccl': S_O2_ccl, 'Sv_agdl': Sv_agdl, 'Sv_acl': Sv_acl, 'Sv_ccl': Sv_ccl, 'Sv_cgdl': Sv_cgdl,
            'Sl_agdl': Sl_agdl, 'Sl_acl': Sl_acl, 'Sl_ccl': Sl_ccl, 'Sl_cgdl': Sl_cgdl, 'Pagc': Pagc, 'Pcgc': Pcgc,
            'Wasm_in': Wasm_in, 'Wasm_out': Wasm_out, 'Waem_in': Waem_in, 'Waem_out': Waem_out, 'Wcsm_in': Wcsm_in,
            'Wcsm_out': Wcsm_out, 'Wcem_in': Wcem_in, 'Wcem_out': Wcem_out, 'Ware': Ware, 'Wv_asm_in': Wv_asm_in,
            'Wv_aem_out': Wv_aem_out, 'Wv_csm_in': Wv_csm_in, 'Wv_cem_out': Wv_cem_out}