Experimental values

This file is designated for executing the AlphaPEM software package.

plot_experimental_polarisation_curve(type_fuel_cell, i_fc_t, U_exp_t, ax)

This function plots the experimental polarisation curve on the same graph as the model results.

Parameters:
  • type_fuel_cell (str) –

    Type of fuel cell used in the model. This parameter includes the fuel cell used in the model and the corresponding operating conditions.

  • i_fc_t (ndarray) –

    Current density values.

  • U_exp_t (ndarray) –

    Experimental values of the voltage.

  • ax (Axes) –

    Axes object on which the experimental data is plotted.

Source code in calibration/experimental_values.py
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
def plot_experimental_polarisation_curve(type_fuel_cell, i_fc_t, U_exp_t, ax):
    """
    This function plots the experimental polarisation curve on the same graph as the model results.

    Parameters
    ----------
    type_fuel_cell : str
        Type of fuel cell used in the model. This parameter includes the fuel cell used in the model and the
        corresponding operating conditions.
    i_fc_t : numpy.ndarray
        Current density values.
    U_exp_t : numpy.ndarray
        Experimental values of the voltage.
    ax : matplotlib.axes.Axes
        Axes object on which the experimental data is plotted.
    """
    if type_fuel_cell == "EH-31_1.5":  # at 1.5 bar
        ax.scatter(i_fc_t, U_exp_t, linewidths=1.5, marker="s", color="black", label="Exp. - P = 1.5 bar")
    elif type_fuel_cell == "EH-31_2.0":  # at 2.0 bar
        ax.scatter(i_fc_t, U_exp_t, linewidths=1.5, marker="v", color="black", label="Exp. - P = 2.0 bar")
    elif type_fuel_cell == "EH-31_2.25":  # at 2.25 bar
        ax.scatter(i_fc_t, U_exp_t, linewidths=1.5, marker="^", color="black", label="Exp. - P = 2.25 bar")
    elif type_fuel_cell == "EH-31_2.5":  # at 2.5 bar
        ax.scatter(i_fc_t, U_exp_t, linewidths=1.5, marker="p", color="black", label="Exp. - P = 2.5 bar")

    elif type_fuel_cell == "BX_1.0":  # at 1.0 atm
        ax.scatter(i_fc_t, U_exp_t, linewidths=3.5, marker="s", color="black", label="Exp. - P = 1.0 atm")
    elif type_fuel_cell == "BX_1.35":  # at 1.35 atm
        ax.scatter(i_fc_t, U_exp_t, linewidths=3.5, marker="v", color="black", label="Exp. - P = 1.35 atm")

    elif type_fuel_cell == "LF":
        ax.scatter(i_fc_t, U_exp_t, linewidths=3.5, marker="s", color="black", label="Experimental data")

    ax.legend(loc='best', markerscale=0.5)

pola_exp_values(type_fuel_cell)

This function returns the experimental values of polarisation curves made on different fuel cells at different operating conditions. The experimental values are used to compare the model results with the experimental data.

Parameters:
  • type_fuel_cell (str) –

    Type of fuel cell used in the model. This parameter includes the fuel cell used in the model and the corresponding operating conditions.

Returns:
  • i_exp_t( ndarray ) –

    Experimental values of the current density.

  • U_exp_t( ndarray ) –

    Experimental values of the voltage.

Source code in calibration/experimental_values.py
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
def pola_exp_values(type_fuel_cell):
    """
    This function returns the experimental values of polarisation curves made on different fuel cells at different
    operating conditions. The experimental values are used to compare the model results with the experimental data.

    Parameters
    ----------
    type_fuel_cell : str
        Type of fuel cell used in the model. This parameter includes the fuel cell used in the model and the
        corresponding operating conditions.

    Returns
    -------
    i_exp_t : numpy.ndarray
        Experimental values of the current density.
    U_exp_t : numpy.ndarray
        Experimental values of the voltage.

    """
    if type_fuel_cell == "EH-31_1.5":  # at 1.5 bar
        # # Current density
        # i_exp_t = np.zeros(37)
        # i_exp_t[0], i_exp_t[1], i_exp_t[2], i_exp_t[3], i_exp_t[4] = 0.050, 0.068, 0.089, 0.110, 0.147
        # i_exp_t[5], i_exp_t[6], i_exp_t[7], i_exp_t[8], i_exp_t[9] = 0.185, 0.233, 0.293, 0.352, 0.395
        # i_exp_t[10], i_exp_t[11], i_exp_t[12], i_exp_t[13], i_exp_t[14] = 0.455, 0.510, 0.556, 0.620, 0.672
        # i_exp_t[15], i_exp_t[16], i_exp_t[17], i_exp_t[18], i_exp_t[19] = 0.738, 0.799, 0.850, 0.892, 0.942
        # i_exp_t[20], i_exp_t[21], i_exp_t[22], i_exp_t[23], i_exp_t[24] = 1.039, 1.139, 1.212, 1.269, 1.360
        # i_exp_t[25], i_exp_t[26], i_exp_t[27], i_exp_t[28], i_exp_t[29] = 1.432, 1.525, 1.604, 1.683, 1.765
        # i_exp_t[30], i_exp_t[31], i_exp_t[32], i_exp_t[33], i_exp_t[34] = 1.878, 1.966, 2.050, 2.109, 2.151
        # i_exp_t[35], i_exp_t[36] = 2.188, 2.246
        # # Voltage
        # U_exp_t = np.zeros(37)
        # U_exp_t[0], U_exp_t[1], U_exp_t[2], U_exp_t[3], U_exp_t[4] = 0.900, 0.882, 0.865, 0.850, 0.834
        # U_exp_t[5], U_exp_t[6], U_exp_t[7], U_exp_t[8], U_exp_t[9] = 0.823, 0.811, 0.794, 0.781, 0.772
        # U_exp_t[10], U_exp_t[11], U_exp_t[12], U_exp_t[13], U_exp_t[14] = 0.761, 0.752, 0.745, 0.735, 0.728
        # U_exp_t[15], U_exp_t[16], U_exp_t[17], U_exp_t[18], U_exp_t[19] = 0.719, 0.712, 0.706, 0.700, 0.694
        # U_exp_t[20], U_exp_t[21], U_exp_t[22], U_exp_t[23], U_exp_t[24] = 0.681, 0.668, 0.660, 0.653, 0.641
        # U_exp_t[25], U_exp_t[26], U_exp_t[27], U_exp_t[28], U_exp_t[29] = 0.634, 0.622, 0.610, 0.599, 0.586
        # U_exp_t[30], U_exp_t[31], U_exp_t[32], U_exp_t[33], U_exp_t[34] = 0.570, 0.556, 0.540, 0.530, 0.521
        # U_exp_t[35], U_exp_t[36] = 0.513, 0.500
        # Current density
        i_exp_t = np.zeros(29)
        i_exp_t[0], i_exp_t[1], i_exp_t[2], i_exp_t[3], i_exp_t[4] = 0.050, 0.068, 0.089, 0.110, 0.147
        i_exp_t[5], i_exp_t[6], i_exp_t[7], i_exp_t[8], i_exp_t[9] = 0.185, 0.233, 0.293, 0.352, 0.395
        i_exp_t[10], i_exp_t[11], i_exp_t[12], i_exp_t[13], i_exp_t[14] = 0.455, 0.510, 0.556, 0.620, 0.672
        i_exp_t[15], i_exp_t[16], i_exp_t[17], i_exp_t[18], i_exp_t[19] = 0.738, 0.799, 0.850, 0.892, 0.942
        i_exp_t[20], i_exp_t[21], i_exp_t[22], i_exp_t[23], i_exp_t[24] = 1.039, 1.139, 1.212, 1.269, 1.360
        i_exp_t[25], i_exp_t[26], i_exp_t[27], i_exp_t[28] = 1.432, 1.525, 1.604, 1.683
        # Voltage
        U_exp_t = np.zeros(29)
        U_exp_t[0], U_exp_t[1], U_exp_t[2], U_exp_t[3], U_exp_t[4] = 0.900, 0.882, 0.865, 0.850, 0.834
        U_exp_t[5], U_exp_t[6], U_exp_t[7], U_exp_t[8], U_exp_t[9] = 0.823, 0.811, 0.794, 0.781, 0.772
        U_exp_t[10], U_exp_t[11], U_exp_t[12], U_exp_t[13], U_exp_t[14] = 0.761, 0.752, 0.745, 0.735, 0.728
        U_exp_t[15], U_exp_t[16], U_exp_t[17], U_exp_t[18], U_exp_t[19] = 0.719, 0.712, 0.706, 0.700, 0.694
        U_exp_t[20], U_exp_t[21], U_exp_t[22], U_exp_t[23], U_exp_t[24] = 0.681, 0.668, 0.660, 0.653, 0.641
        U_exp_t[25], U_exp_t[26], U_exp_t[27], U_exp_t[28] = 0.634, 0.622, 0.610, 0.599
    elif type_fuel_cell == "EH-31_2.0":  # at 2.0 bar
        # # Current density
        # i_exp_t = np.zeros(49)
        # i_exp_t[0], i_exp_t[1], i_exp_t[2], i_exp_t[3], i_exp_t[4] = 0.050, 0.057, 0.079, 0.106, 0.135
        # i_exp_t[5], i_exp_t[6], i_exp_t[7], i_exp_t[8], i_exp_t[9] = 0.171, 0.206, 0.242, 0.302, 0.346
        # i_exp_t[10], i_exp_t[11], i_exp_t[12], i_exp_t[13], i_exp_t[14] = 0.395, 0.434, 0.476, 0.531, 0.570
        # i_exp_t[15], i_exp_t[16], i_exp_t[17], i_exp_t[18], i_exp_t[19] = 0.623, 0.681, 0.731, 0.779, 0.822
        # i_exp_t[20], i_exp_t[21], i_exp_t[22], i_exp_t[23], i_exp_t[24] = 0.868, 0.930, 0.976, 1.031, 1.090
        # i_exp_t[25], i_exp_t[26], i_exp_t[27], i_exp_t[28], i_exp_t[29] = 1.134, 1.205, 1.242, 1.312, 1.358
        # i_exp_t[30], i_exp_t[31], i_exp_t[32], i_exp_t[33], i_exp_t[34] = 1.403, 1.453, 1.501, 1.569, 1.634,
        # i_exp_t[35], i_exp_t[36], i_exp_t[37], i_exp_t[38], i_exp_t[39] = 1.725, 1.786, 1.857, 1.924, 1.979
        # i_exp_t[40], i_exp_t[41], i_exp_t[42], i_exp_t[43], i_exp_t[44] = 2.050, 2.125, 2.168, 2.214, 2.258
        # i_exp_t[45], i_exp_t[46], i_exp_t[47], i_exp_t[48] = 2.308, 2.348, 2.413, 2.459
        # # Voltage
        # U_exp_t = np.zeros(49)
        # U_exp_t[0], U_exp_t[1], U_exp_t[2], U_exp_t[3], U_exp_t[4] = 0.900, 0.889, 0.874, 0.860, 0.853
        # U_exp_t[5], U_exp_t[6], U_exp_t[7], U_exp_t[8], U_exp_t[9] = 0.845, 0.837, 0.830, 0.817, 0.808
        # U_exp_t[10], U_exp_t[11], U_exp_t[12], U_exp_t[13], U_exp_t[14] = 0.800, 0.792, 0.786, 0.779, 0.772
        # U_exp_t[15], U_exp_t[16], U_exp_t[17], U_exp_t[18], U_exp_t[19] = 0.765, 0.759, 0.753, 0.747, 0.742,
        # U_exp_t[20], U_exp_t[21], U_exp_t[22], U_exp_t[23], U_exp_t[24] = 0.737, 0.730, 0.726, 0.720, 0.714,
        # U_exp_t[25], U_exp_t[26], U_exp_t[27], U_exp_t[28], U_exp_t[29] = 0.710, 0.702, 0.698, 0.690, 0.684
        # U_exp_t[30], U_exp_t[31], U_exp_t[32], U_exp_t[33], U_exp_t[34] = 0.679, 0.673, 0.668, 0.659, 0.651
        # U_exp_t[35], U_exp_t[36], U_exp_t[37], U_exp_t[38], U_exp_t[39] = 0.640, 0.631, 0.620, 0.608, 0.598
        # U_exp_t[40], U_exp_t[41], U_exp_t[42], U_exp_t[43], U_exp_t[44] = 0.586, 0.573, 0.565, 0.557, 0.548
        # U_exp_t[45], U_exp_t[46], U_exp_t[47], U_exp_t[48] = 0.537, 0.528, 0.513, 0.502
        # Current density
        i_exp_t = np.zeros(28)
        i_exp_t[0], i_exp_t[1], i_exp_t[2], i_exp_t[3], i_exp_t[4] = 0.050, 0.057, 0.079, 0.106, 0.135
        i_exp_t[5], i_exp_t[6], i_exp_t[7], i_exp_t[8], i_exp_t[9] = 0.171, 0.206, 0.242, 0.302, 0.346
        i_exp_t[10], i_exp_t[11], i_exp_t[12], i_exp_t[13], i_exp_t[14] = 0.395, 0.434, 0.476, 0.531, 0.570
        i_exp_t[15], i_exp_t[16], i_exp_t[17], i_exp_t[18], i_exp_t[19] = 0.623, 0.681, 0.731, 0.779, 0.822
        i_exp_t[20], i_exp_t[21], i_exp_t[22], i_exp_t[23], i_exp_t[24] = 0.868, 0.930, 0.976, 1.031, 1.090
        i_exp_t[25], i_exp_t[26], i_exp_t[27] = 1.134, 1.205, 1.242
        # Voltage
        U_exp_t = np.zeros(28)
        U_exp_t[0], U_exp_t[1], U_exp_t[2], U_exp_t[3], U_exp_t[4] = 0.900, 0.889, 0.874, 0.860, 0.853
        U_exp_t[5], U_exp_t[6], U_exp_t[7], U_exp_t[8], U_exp_t[9] = 0.845, 0.837, 0.830, 0.817, 0.808
        U_exp_t[10], U_exp_t[11], U_exp_t[12], U_exp_t[13], U_exp_t[14] = 0.800, 0.792, 0.786, 0.779, 0.772
        U_exp_t[15], U_exp_t[16], U_exp_t[17], U_exp_t[18], U_exp_t[19] = 0.765, 0.759, 0.753, 0.747, 0.742,
        U_exp_t[20], U_exp_t[21], U_exp_t[22], U_exp_t[23], U_exp_t[24] = 0.737, 0.730, 0.726, 0.720, 0.714,
        U_exp_t[25], U_exp_t[26], U_exp_t[27] = 0.710, 0.702, 0.698
    elif type_fuel_cell == "EH-31_2.25":  # at 2.25 bar
        # # Current density
        # i_exp_t = np.zeros(54)
        # i_exp_t[0], i_exp_t[1], i_exp_t[2], i_exp_t[3], i_exp_t[4] = 0.056, 0.095, 0.120, 0.138, 0.160
        # i_exp_t[5], i_exp_t[6], i_exp_t[7], i_exp_t[8], i_exp_t[9] = 0.183, 0.218, 0.248, 0.279, 0.315
        # i_exp_t[10], i_exp_t[11], i_exp_t[12], i_exp_t[13], i_exp_t[14] = 0.364, 0.409, 0.477, 0.536, 0.594
        # i_exp_t[15], i_exp_t[16], i_exp_t[17], i_exp_t[18], i_exp_t[19] = 0.641, 0.697, 0.748, 0.809, 0.866
        # i_exp_t[20], i_exp_t[21], i_exp_t[22], i_exp_t[23], i_exp_t[24] = 0.944, 1.011, 1.074, 1.142, 1.193
        # i_exp_t[25], i_exp_t[26], i_exp_t[27], i_exp_t[28], i_exp_t[29] = 1.252, 1.322, 1.381, 1.442, 1.496
        # i_exp_t[30], i_exp_t[31], i_exp_t[32], i_exp_t[33], i_exp_t[34] = 1.545, 1.599, 1.675, 1.746, 1.827
        # i_exp_t[35], i_exp_t[36], i_exp_t[37], i_exp_t[38], i_exp_t[39] = 1.868, 1.918, 2.004, 2.053, 2.114
        # i_exp_t[40], i_exp_t[41], i_exp_t[42], i_exp_t[43], i_exp_t[44] = 2.156, 2.209, 2.257, 2.310, 2.356
        # i_exp_t[45], i_exp_t[46], i_exp_t[47], i_exp_t[48], i_exp_t[49] = 2.403, 2.468, 2.513, 2.552, 2.600
        # i_exp_t[50], i_exp_t[51], i_exp_t[52], i_exp_t[53] = 2.636, 2.679, 2.728, 2.794
        # # Voltage
        # U_exp_t = np.zeros(54)
        # U_exp_t[0], U_exp_t[1], U_exp_t[2], U_exp_t[3], U_exp_t[4] = 0.894, 0.882, 0.873, 0.867, 0.861
        # U_exp_t[5], U_exp_t[6], U_exp_t[7], U_exp_t[8], U_exp_t[9] = 0.854, 0.847, 0.840, 0.834, 0.827
        # U_exp_t[10], U_exp_t[11], U_exp_t[12], U_exp_t[13], U_exp_t[14] = 0.819, 0.812, 0.801, 0.793, 0.786
        # U_exp_t[15], U_exp_t[16], U_exp_t[17], U_exp_t[18], U_exp_t[19] = 0.781, 0.775, 0.771, 0.764, 0.759
        # U_exp_t[20], U_exp_t[21], U_exp_t[22], U_exp_t[23], U_exp_t[24] = 0.751, 0.746, 0.740, 0.734, 0.728
        # U_exp_t[25], U_exp_t[26], U_exp_t[27], U_exp_t[28], U_exp_t[29] = 0.723, 0.715, 0.709, 0.703, 0.698
        # U_exp_t[30], U_exp_t[31], U_exp_t[32], U_exp_t[33], U_exp_t[34] = 0.692, 0.686, 0.678, 0.670, 0.660
        # U_exp_t[35], U_exp_t[36], U_exp_t[37], U_exp_t[38], U_exp_t[39] = 0.654, 0.647, 0.635, 0.628, 0.618
        # U_exp_t[40], U_exp_t[41], U_exp_t[42], U_exp_t[43], U_exp_t[44] = 0.613, 0.604, 0.596, 0.587, 0.580
        # U_exp_t[45], U_exp_t[46], U_exp_t[47], U_exp_t[48], U_exp_t[49] = 0.570, 0.559, 0.551, 0.545, 0.536
        # U_exp_t[50], U_exp_t[51], U_exp_t[52], U_exp_t[53] = 0.528, 0.520, 0.511, 0.497
        # Current density
        i_exp_t = np.zeros(33)
        i_exp_t[0], i_exp_t[1], i_exp_t[2], i_exp_t[3], i_exp_t[4] = 0.056, 0.095, 0.120, 0.138, 0.160
        i_exp_t[5], i_exp_t[6], i_exp_t[7], i_exp_t[8], i_exp_t[9] = 0.183, 0.218, 0.248, 0.279, 0.315
        i_exp_t[10], i_exp_t[11], i_exp_t[12], i_exp_t[13], i_exp_t[14] = 0.364, 0.409, 0.477, 0.536, 0.594
        i_exp_t[15], i_exp_t[16], i_exp_t[17], i_exp_t[18], i_exp_t[19] = 0.641, 0.697, 0.748, 0.809, 0.866
        i_exp_t[20], i_exp_t[21], i_exp_t[22], i_exp_t[23], i_exp_t[24] = 0.944, 1.011, 1.074, 1.142, 1.193
        i_exp_t[25], i_exp_t[26], i_exp_t[27], i_exp_t[28], i_exp_t[29] = 1.252, 1.322, 1.381, 1.442, 1.496
        i_exp_t[30], i_exp_t[31], i_exp_t[32] = 1.545, 1.599, 1.675
        # Voltage
        U_exp_t = np.zeros(33)
        U_exp_t[0], U_exp_t[1], U_exp_t[2], U_exp_t[3], U_exp_t[4] = 0.894, 0.882, 0.873, 0.867, 0.861
        U_exp_t[5], U_exp_t[6], U_exp_t[7], U_exp_t[8], U_exp_t[9] = 0.854, 0.847, 0.840, 0.834, 0.827
        U_exp_t[10], U_exp_t[11], U_exp_t[12], U_exp_t[13], U_exp_t[14] = 0.819, 0.812, 0.801, 0.793, 0.786
        U_exp_t[15], U_exp_t[16], U_exp_t[17], U_exp_t[18], U_exp_t[19] = 0.781, 0.775, 0.771, 0.764, 0.759
        U_exp_t[20], U_exp_t[21], U_exp_t[22], U_exp_t[23], U_exp_t[24] = 0.751, 0.746, 0.740, 0.734, 0.728
        U_exp_t[25], U_exp_t[26], U_exp_t[27], U_exp_t[28], U_exp_t[29] = 0.723, 0.715, 0.709, 0.703, 0.698
        U_exp_t[30], U_exp_t[31], U_exp_t[32] = 0.692, 0.686, 0.678
    elif type_fuel_cell == "EH-31_2.5":  # at 2.5 bar
        # # Current density
        # i_exp_t = np.zeros(56)
        # i_exp_t[0], i_exp_t[1], i_exp_t[2], i_exp_t[3], i_exp_t[4] = 0.057, 0.070, 0.082, 0.101, 0.127
        # i_exp_t[5], i_exp_t[6], i_exp_t[7], i_exp_t[8], i_exp_t[9] = 0.145, 0.168, 0.200, 0.234, 0.267
        # i_exp_t[10], i_exp_t[11], i_exp_t[12], i_exp_t[13], i_exp_t[14] = 0.296, 0.331, 0.355, 0.388, 0.423
        # i_exp_t[15], i_exp_t[16], i_exp_t[17], i_exp_t[18], i_exp_t[19] = 0.467, 0.527, 0.577, 0.632, 0.685
        # i_exp_t[20], i_exp_t[21], i_exp_t[22], i_exp_t[23], i_exp_t[24] = 0.740, 0.789, 0.845, 0.898, 0.953
        # i_exp_t[25], i_exp_t[26], i_exp_t[27], i_exp_t[28], i_exp_t[29] = 1.030, 1.124, 1.192, 1.254, 1.314
        # i_exp_t[30], i_exp_t[31], i_exp_t[32], i_exp_t[33], i_exp_t[34] = 1.364, 1.434, 1.514, 1.587, 1.643
        # i_exp_t[35], i_exp_t[36], i_exp_t[37], i_exp_t[38], i_exp_t[39] = 1.707, 1.769, 1.826, 1.892, 1.972
        # i_exp_t[40], i_exp_t[41], i_exp_t[42], i_exp_t[43], i_exp_t[44] = 2.040, 2.124, 2.192, 2.265, 2.358
        # i_exp_t[45], i_exp_t[46], i_exp_t[47], i_exp_t[48], i_exp_t[49] = 2.429, 2.508, 2.572, 2.624, 2.691
        # i_exp_t[50], i_exp_t[51], i_exp_t[52], i_exp_t[53], i_exp_t[54] = 2.750, 2.822, 2.879, 2.918, 2.956
        # i_exp_t[55] = 2.988
        # # Voltage
        # U_exp_t = np.zeros(56)
        # U_exp_t[0], U_exp_t[1], U_exp_t[2], U_exp_t[3], U_exp_t[4] = 0.900, 0.892, 0.884, 0.875, 0.866
        # U_exp_t[5], U_exp_t[6], U_exp_t[7], U_exp_t[8], U_exp_t[9] = 0.861, 0.856, 0.850, 0.845, 0.840
        # U_exp_t[10], U_exp_t[11], U_exp_t[12], U_exp_t[13], U_exp_t[14] = 0.835, 0.829, 0.824, 0.820, 0.814
        # U_exp_t[15], U_exp_t[16], U_exp_t[17], U_exp_t[18], U_exp_t[19] = 0.807, 0.800, 0.793, 0.787, 0.783
        # U_exp_t[20], U_exp_t[21], U_exp_t[22], U_exp_t[23], U_exp_t[24] = 0.778, 0.775, 0.771, 0.767, 0.763
        # U_exp_t[25], U_exp_t[26], U_exp_t[27], U_exp_t[28], U_exp_t[29] = 0.758, 0.750, 0.744, 0.738, 0.732
        # U_exp_t[30], U_exp_t[31], U_exp_t[32], U_exp_t[33], U_exp_t[34] = 0.726, 0.719, 0.712, 0.703, 0.697
        # U_exp_t[35], U_exp_t[36], U_exp_t[37], U_exp_t[38], U_exp_t[39] = 0.691, 0.685, 0.679, 0.672, 0.663
        # U_exp_t[40], U_exp_t[41], U_exp_t[42], U_exp_t[43], U_exp_t[44] = 0.657, 0.648, 0.640, 0.632, 0.621
        # U_exp_t[45], U_exp_t[46], U_exp_t[47], U_exp_t[48], U_exp_t[49] = 0.610, 0.600, 0.591, 0.584, 0.575
        # U_exp_t[50], U_exp_t[51], U_exp_t[52], U_exp_t[53], U_exp_t[54] = 0.566, 0.555, 0.546, 0.537, 0.531
        # U_exp_t[55] = 0.524
        # Current density
        i_exp_t = np.zeros(33)
        i_exp_t[0], i_exp_t[1], i_exp_t[2], i_exp_t[3], i_exp_t[4] = 0.057, 0.070, 0.082, 0.101, 0.127
        i_exp_t[5], i_exp_t[6], i_exp_t[7], i_exp_t[8], i_exp_t[9] = 0.145, 0.168, 0.200, 0.234, 0.267
        i_exp_t[10], i_exp_t[11], i_exp_t[12], i_exp_t[13], i_exp_t[14] = 0.296, 0.331, 0.355, 0.388, 0.423
        i_exp_t[15], i_exp_t[16], i_exp_t[17], i_exp_t[18], i_exp_t[19] = 0.467, 0.527, 0.577, 0.632, 0.685
        i_exp_t[20], i_exp_t[21], i_exp_t[22], i_exp_t[23], i_exp_t[24] = 0.740, 0.789, 0.845, 0.898, 0.953
        i_exp_t[25], i_exp_t[26], i_exp_t[27], i_exp_t[28], i_exp_t[29] = 1.030, 1.124, 1.192, 1.254, 1.314
        i_exp_t[30], i_exp_t[31], i_exp_t[32] = 1.364, 1.434, 1.514
        # Voltage
        U_exp_t = np.zeros(33)
        U_exp_t[0], U_exp_t[1], U_exp_t[2], U_exp_t[3], U_exp_t[4] = 0.900, 0.892, 0.884, 0.875, 0.866
        U_exp_t[5], U_exp_t[6], U_exp_t[7], U_exp_t[8], U_exp_t[9] = 0.861, 0.856, 0.850, 0.845, 0.840
        U_exp_t[10], U_exp_t[11], U_exp_t[12], U_exp_t[13], U_exp_t[14] = 0.835, 0.829, 0.824, 0.820, 0.814
        U_exp_t[15], U_exp_t[16], U_exp_t[17], U_exp_t[18], U_exp_t[19] = 0.807, 0.800, 0.793, 0.787, 0.783
        U_exp_t[20], U_exp_t[21], U_exp_t[22], U_exp_t[23], U_exp_t[24] = 0.778, 0.775, 0.771, 0.767, 0.763
        U_exp_t[25], U_exp_t[26], U_exp_t[27], U_exp_t[28], U_exp_t[29] = 0.758, 0.750, 0.744, 0.738, 0.732
        U_exp_t[30], U_exp_t[31], U_exp_t[32] = 0.726, 0.719, 0.712

    elif type_fuel_cell == "LF":
        # Current density
        i_exp_t = np.zeros(13)
        i_exp_t[0], i_exp_t[1], i_exp_t[2], i_exp_t[3], i_exp_t[4] = 0.00, 0.04, 0.08, 0.16, 0.25
        i_exp_t[5], i_exp_t[6], i_exp_t[7], i_exp_t[8], i_exp_t[9] = 0.32, 0.39, 0.48, 0.64, 0.80
        i_exp_t[10], i_exp_t[11], i_exp_t[12] = 1.00, 1.20, 1.40
        # Voltage
        U_exp_t = np.zeros(13)
        U_exp_t[0], U_exp_t[1], U_exp_t[2], U_exp_t[3], U_exp_t[4] = 0.98, 0.87, 0.84, 0.80, 0.77
        U_exp_t[5], U_exp_t[6], U_exp_t[7], U_exp_t[8], U_exp_t[9] = 0.74, 0.72, 0.69, 0.65, 0.60
        U_exp_t[10], U_exp_t[11], U_exp_t[12] = 0.54, 0.46, 0.32

    return i_exp_t * 1e4, U_exp_t # Conversion in A.m-2

pola_exp_values_calibration(type_fuel_cell)

This function returns the experimental values of polarisation curves made on different fuel cells at different operating conditions. The experimental values are used for calibrating the model and so are composed of a reduced number of points compare to the pola_exp_values function. These points are specifically chosen to be as few as possible while still providing a good representation of the polarisation curve.

Parameters:
  • type_fuel_cell (str) –

    Type of fuel cell used in the model. This parameter includes the fuel cell used in the model and the corresponding operating conditions.

Returns:
  • i_exp_t( ndarray ) –

    Experimental values of the current density.

  • U_exp_t( ndarray ) –

    Experimental values of the voltage.

Source code in calibration/experimental_values.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
def pola_exp_values_calibration(type_fuel_cell):
    """
    This function returns the experimental values of polarisation curves made on different fuel cells at different
    operating conditions. The experimental values are used for calibrating the model and so are composed of a reduced
    number of points compare to the pola_exp_values function. These points are specifically chosen to be as few as
    possible while still providing a good representation of the polarisation curve.

    Parameters
    ----------
    type_fuel_cell : str
        Type of fuel cell used in the model. This parameter includes the fuel cell used in the model and the
        corresponding operating conditions.

    Returns
    -------
    i_exp_t : numpy.ndarray
        Experimental values of the current density.
    U_exp_t : numpy.ndarray
        Experimental values of the voltage.

    """
    if type_fuel_cell == "EH-31_1.5":  # at 1.5 bar
        # # Current density
        # i_exp_cali_t = np.zeros(7)
        # i_exp_cali_t[0], i_exp_cali_t[1], i_exp_cali_t[2], i_exp_cali_t[3] = 0.050, 0.110, 0.293, 1.039
        # i_exp_cali_t[4], i_exp_cali_t[5], i_exp_cali_t[6] = 1.683, 1.966, 2.246
        # # Voltage
        # U_exp_cali_t = np.zeros(7)
        # U_exp_cali_t[0], U_exp_cali_t[1], U_exp_cali_t[2], U_exp_cali_t[3] = 0.900, 0.850, 0.794, 0.681
        # U_exp_cali_t[4], U_exp_cali_t[5], U_exp_cali_t[6] = 0.599, 0.556, 0.500
        # Current density
        i_exp_cali_t = np.zeros(5)
        i_exp_cali_t[0], i_exp_cali_t[1], i_exp_cali_t[2], i_exp_cali_t[3] = 0.050, 0.110, 0.293, 1.039
        i_exp_cali_t[4] = 1.683
        # Voltage
        U_exp_cali_t = np.zeros(5)
        U_exp_cali_t[0], U_exp_cali_t[1], U_exp_cali_t[2], U_exp_cali_t[3] = 0.900, 0.850, 0.794, 0.681
        U_exp_cali_t[4] = 0.599
    elif type_fuel_cell == "EH-31_2.0":  # at 2.0 bar
        # # Current density
        # i_exp_cali_t = np.zeros(8)
        # i_exp_cali_t[0], i_exp_cali_t[1], i_exp_cali_t[2], i_exp_cali_t[3] = 0.050, 0.106, 0.242, 0.681
        # i_exp_cali_t[4], i_exp_cali_t[5], i_exp_cali_t[6], i_exp_cali_t[7] = 1.242, 1.501, 1.979, 2.459
        # # Voltage
        # U_exp_cali_t = np.zeros(8)
        # U_exp_cali_t[0], U_exp_cali_t[1], U_exp_cali_t[2], U_exp_cali_t[3] = 0.900, 0.860, 0.830, 0.759
        # U_exp_cali_t[4], U_exp_cali_t[5], U_exp_cali_t[6], U_exp_cali_t[7] = 0.698, 0.668, 0.598, 0.502
        # Current density
        i_exp_cali_t = np.zeros(5)
        i_exp_cali_t[0], i_exp_cali_t[1], i_exp_cali_t[2], i_exp_cali_t[3] = 0.050, 0.106, 0.242, 0.681
        i_exp_cali_t[4] = 1.242
        # Voltage
        U_exp_cali_t = np.zeros(5)
        U_exp_cali_t[0], U_exp_cali_t[1], U_exp_cali_t[2], U_exp_cali_t[3] = 0.900, 0.860, 0.830, 0.759
        U_exp_cali_t[4] = 0.698
    elif type_fuel_cell == "EH-31_2.25":  # at 2.25 bar
        # # Current density
        # i_exp_cali_t = np.zeros(8)
        # i_exp_cali_t[0], i_exp_cali_t[1], i_exp_cali_t[2], i_exp_cali_t[3] = 0.056, 0.183, 0.364, 1.011
        # i_exp_cali_t[4], i_exp_cali_t[5], i_exp_cali_t[6], i_exp_cali_t[7] = 1.675, 1.918, 2.356, 2.794
        # # Voltage
        # U_exp_cali_t = np.zeros(8)
        # U_exp_cali_t[0], U_exp_cali_t[1], U_exp_cali_t[2], U_exp_cali_t[3] = 0.894, 0.854, 0.819, 0.746
        # U_exp_cali_t[4], U_exp_cali_t[5], U_exp_cali_t[6], U_exp_cali_t[7] = 0.678, 0.647, 0.580, 0.497
        # Current density
        i_exp_cali_t = np.zeros(5)
        i_exp_cali_t[0], i_exp_cali_t[1], i_exp_cali_t[2], i_exp_cali_t[3] = 0.056, 0.183, 0.364, 1.011
        i_exp_cali_t[4] = 1.675
        # Voltage
        U_exp_cali_t = np.zeros(5)
        U_exp_cali_t[0], U_exp_cali_t[1], U_exp_cali_t[2], U_exp_cali_t[3] = 0.894, 0.854, 0.819, 0.746
        U_exp_cali_t[4] = 0.678
    elif type_fuel_cell == "EH-31_2.5":  # at 2.5 bar
        # # Current density
        # i_exp_cali_t = np.zeros(10)
        # i_exp_cali_t[0], i_exp_cali_t[1], i_exp_cali_t[2], i_exp_cali_t[3] = 0.057, 0.127, 0.296, 0.527
        # i_exp_cali_t[4], i_exp_cali_t[5], i_exp_cali_t[6], i_exp_cali_t[7] = 1.030, 1.514, 1.972, 2.358
        # i_exp_cali_t[8], i_exp_cali_t[9] = 2.691, 2.988
        # # Voltage
        # U_exp_cali_t = np.zeros(10)
        # U_exp_cali_t[0], U_exp_cali_t[1], U_exp_cali_t[2], U_exp_cali_t[3] = 0.900, 0.866, 0.835, 0.800
        # U_exp_cali_t[4], U_exp_cali_t[5], U_exp_cali_t[6], U_exp_cali_t[7] = 0.758, 0.712, 0.663, 0.621
        # U_exp_cali_t[8], U_exp_cali_t[9] = 0.575, 0.524
        # Current density
        i_exp_cali_t = np.zeros(6)
        i_exp_cali_t[0], i_exp_cali_t[1], i_exp_cali_t[2], i_exp_cali_t[3] = 0.057, 0.127, 0.296, 0.527
        i_exp_cali_t[4], i_exp_cali_t[5] = 1.030, 1.514
        # Voltage
        U_exp_cali_t = np.zeros(6)
        U_exp_cali_t[0], U_exp_cali_t[1], U_exp_cali_t[2], U_exp_cali_t[3] = 0.900, 0.866, 0.835, 0.800
        U_exp_cali_t[4], U_exp_cali_t[5] = 0.758, 0.712

    return i_exp_cali_t * 1e4, U_exp_cali_t # Conversion in A.m-2